Forward-looking providers are converting reams of data from myriad sources into innovative new ways to deliver healthcare and improve efficiencies.

As costs continue to rise, healthcare organizations must become more efficient with collecting, says Anthony Cunningham, MBA, vice president of Patient Financial Services at Wake Forest Baptist Health. One approach, he explains, is deploying staff away from repetitive tasks and “toward high-value-add work.” That’s where artificial intelligence comes in.

Countless predictions have been made about artificial intelligence and machine learning changing imaging screening and diagnosis at the point of patient care—and clinical studies and experience are now proving it. Radiologists say the impact is real in improving diagnosis of cancers and quality of care, consistency among readers and reducing read times and unnecessary biopsies. One shining example targets the evaluation of breast ultrasound imaging.

Smart technologies are often touted as the answer to some of cardiology’s greatest challenges in patient care and practice. But where does hyperbole end and reality begin with artificial intelligence, machine learning and deep learning?

Developments in vastly scalable IT infrastructure will soon increase the rate at which machine learning systems gain the capacity to transform the field of medical imaging across clinical, operational and business domains. Moreover, if the pace seems to be picking up, that’s because data management on a massive scale has advanced exponentially over just the past several years. 

A new project is seeking to make MRI scans up to 10 times faster by capturing less data. NYU’s Center for Advanced Imaging Innovation and Research (CAI2R) is working with the Facebook Artificial Intelligence Research group to “train artificial neural networks to recognize the underlying structure of the images to fill in views omitted from the accelerated scan.”

Machine learning is one of the hottest topics in radiology and all of healthcare, but reading the latest and greatest ML research can be difficult, even for experienced medical professionals. A new analysis written by a team at Northern Ireland’s Belfast City Hospital and published in the American Journal of Roentgenology was written with that very problem in mind.

A compilation of the latest news in AI and machine learning

(Spoiler alert: It’s a 69-page report that indicates the use of AI in healthcare is both promising and doable.)

When it comes to AI and machine learning, the regulatory trail has been blazed and the approval gates through open. The FDA has approved a couple dozen apps over the last year and a half—and the momentum is clearly building with Scott Gottlieb at the agency’s helm and recent moves to ramp up staffing to meet the demand.  

Lawrence Tanenbaum is a big believer in AI, as a tool to create better images, offer a more comprehensive view of a patient and more effectively handle imaging’s increasing volume and complexity. Bigger yet, AI is the impetus to change the way radiology and medicine are practiced across the care spectrum.

The power of artificial intelligence (AI) is enabling clinical breakthroughs that identify biomarkers without invasive procedures, diagnose skin cancer with a photograph, predict adverse clinical events, and recommend treatments based on current literature. Getting these innovations to market requires access to large, complex data sets to train the AI models.

Around the web

Two different companies announced that they are recalling all lots of the medication. 

CardioSmart, an online resource for both patients and clinicians, has a new editor. 

The funding includes $8.5 billion in American Rescue Plan resources for providers who treat Medicaid, Children's Health Insurance Program and Medicare patients.